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THE PROBLEM OF BREAKDOWN OF A VORTEX LINE* 

V.N. TRIGUB 

The conditions for the appearance of a singularity in the course of 
solving the quasicylindrical approximation equations for a vortex line 
/l/ and expanding the velocity in its neighbourhood, are studied. In /l/ 
the appearance of such a singularity was regarded as a signal of vortex 
breakdown, just as the appearance of a Goldstein singularity /2/ or of 
a singularity investigated in /3/ in the course of solving the boundary 
layer equations with a given positive pressure gradient implied the 
impossibility of a flow without separation. In a different approach to 
the study of vortex breakdown /4/ (the present level of achievement in 
the study of this phenomenon is elucidated in /5, 6/), the vortex flows 
are classified as "supercritical" if the waves can propagate with phase 
veloicity only in the downstream direction, and "subscritical" if the 
waves can propagate upstream. The vortex breakdown is regarded as a 
passage from the supercritical to the subcritical state at distances of 
the order of the vortex radius. 

The circumstancesunderwhichthe conditions for the appearance of a 
singularity andof the "criticality" are identical, are explainedbelow. A 
classificationofpossibile singularities is givenanditisshownthatin the 
generalcase,whentheexternallongitudinalpressuregradientisgiven, the 
solutionnearthesingularitycannot, asin/2, 3/,be continuedpastthe 

singularity. 
1. Let US consider a vortex line with constant circulation r, distributed along the 

axis of a tube of variable cross-section, in the potential flow of an incompressible fluid 
flowing through a tube. Such a situation is simulated in most experimental investigations for 
studying vortex breakdown /5/. Let us normalize the velocities and dimensions to their 
characteristic values in the outer flow C.L. the pressure to pU2 and the Reynolds number 
Re = uL/v = 1 EL, E + u. We introduce a cylindrical coordinate system (2, r) with the cz axis 
directed along the vortex axis in the downstream direction (the flow is assumed to be axisym- 
metric). Let fi, f, iz be the axial, radial and asimuthal velocity component respectively. 
Passing to the limit in the Navier-Stokes equations, as was done in deriving the boundary layer 
equations (Us u, g. y = 0 (1). c--c 0). we obtain a system of quasicylindrical approximation equations 
/l, 6/ describing a slow regrouping of the internal vortex structure under the influence of 
viscosity 

11 = ii (I, y) - 0 (F). r = E? (I, y) r - 0 (F*j (1.1) 
; = Fg (5. y) r - 0 (Fj. y = rZ'(2E.?) 

II s +,2$=-L 
bZ 

2-j&g 

0: a: 
uoIy-uby=- vy+, +&, 

au 31 u ! -= 
ar- dy 
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II = u:, (x0. y). g = g" (zT~. yjwhenz = J., 

Here u* (2) is a function known from the external solution. 
Various finite difference /6/ and integral /7/ methods were proposed for the numerical 

investigation of system (1.1). System (1.1) is non-linear parabolic, just as the system of 
boundary layer equations. Having the initial profiles Ye, & at the points z0 available we 
can, generally speaking, extend the solution regularly to the point r,i-AZ, etc. 

However, when the numerical computations are carried Out, the process is frequently 
terminated at some point z1 by the singularity (L. irv;bz, dg:Ar - 01 as z - I~). The appearance 
of a singularity implies the unsuitability of the quasicylindrical approximation for describing 
the flow near the point I,, andindicates certain special properties of the profiles (1 (Y, II!, 

8 (Y. 2,) at this point. 
In the modem asymptotic theories of detached flows /B, 9/ which take into account the 

interaction between the boundary layer and the outer flow, the point of separation does not 
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coincide with the singularity of the boundary layer equations with a given pressure gradient. 
The flow patterns in the neighbourhood of these points are also different. The presence of 
a singularity merely indicates the impossibility of the existence of a flow without separation. 
An identical relationship obviously exists between the singularity of the quasicylindrical 
equations with a given pressure gradient, and the point of vortex breakdown. 

Thus the vortex breakdown is characterized by the appearance on the axis of a stagnation 
point, although in all the computations of the quasicylindrical approximation /l, 7/ leading 
to the appearance of a singularity, the velocity on the axis never became zero on approaching 
the singularity. Therefore the present paper deals only with the velocity profiles where 
U > 0. 

We assume that the velocity and circulation profiles u (Y, 4 = u (Y), g (Y+ rl) = r (Y) are 
smooth functions of the form normal for the vortex, i.e. lJ> 0 in the whole interval y> 0; 

r' (Y) increases monotonically, U = a + 0 (y), r = O(y) as Y-+0; r+ r,, U+ U, exponentially 

as y+w. We use the distance from the point II: E = f (z-r,) as the small parameter, 
and the upper and lower signs correspond to the expansions from the left and right respectively. 
The expansion of the velocity over the point zI is regular in z and given by the outer 
solution 

LL = u, 5 Et&' (2Jj r;*;%," (Xl) + 0 (&a), y - w. 

We shall show which conditions are satisfied by the profiles U,r in the cases when a 
regular expansion near the point rI is not possible, and construct the expansions near the 
singularity. 

2. We will introduce a stream function J; SO that u = aq,'ay, 1: = *a+:ag,. Let us write 
the expansions of the functions near the point z1 in the following form (the necessity for 
precisely this representation is justified below): 

3 =$‘o (Y) + E'%l (Y) A Evz (Y) i F"(cs (Y) f . 
g = r (Y) T E"% (Y) - 5g, (Y) + il"g3 (Y) + 

P = p (Y) -+ VIP, (Y) - ZP? (Y) - 51% (Y) i . . . 

(2.1) 

Substituting the expansions (2.1) into the quasicylindrical approximation equations (l.l), 
we arrive at a sequence of boundary value problems forthe ordinary differential equations 

(Pt. gi are expressed in terms of q,) 

I> (Cf]) = 'iiU - R,c(, = 11. LC(i2)=' I?(r*2=Q) n .' (Z.2) 

L ((13) = R?(IIV.' - 1 J?gq,j 2 0,. L ti ,,i = G, 

(ik (0) = 0, q’2r-l - 0 as y- cc: Ii= 1.‘.... 

qz’ + _u, (q). (cd’ + 1 $I,” (z,). . . . 
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A prime denotes differentration with respect to y, and the right-hand sides of G,, contain 

only qr form the previous approximations. Terms containing R?. R3.R, appear because the 
equations 11.1: are non-linear, and the quantities UJ~,@~ are given by the dissipative terms 
of (1.1). 

The homogeneous boundary value problem obtained for g1 has, in general, no non-trivial 
solutions. Writing 
operator L, therefore"q~~ b, etc. 

we arrive at a homogeneous problem for 'pa with +che same 
This if zero is not an eigenvalue of the operator L,only 

a regular expansion is possible and the function QP is defined uniquely for even values of 
k. 

Now let U,r be such that a non-trivial solution of the homogeneous equation ~0,~0(0)= 
0, cpO (a~)= 0 exists, with the normalizing condition To'(O) =I. We take 

as the linearly independent solution, and varying the constants we obtain the general solution 
for CF,~ 
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(2.3) 

Requiring that the boundary conditions hold and taking into account the fact that 

90 = Y - ri*ay* + 0 (y3), 9, = -1 + 2ayln y $ . . . 

as y + 0 we obtain 

s,'(+po(*_)=fG,~ody . (2.4) 
0 

It can be shown that the quantity mn' (0) is finite, therefore irrespective of the fact 
that the operator L is obtained from the inviscid approximation and contains only a second- 
order derivative, the synmtietry condition on the axis &l8r = 0 is satisfied automatically, 
i.e. there is no need for an additional investigation of the viscous sublayer, as was done 
in e.g. /7/. 

Condition (2.4) (which can also be obtained by applying Green's formula to the boundary 
value problem) cannot be satisfied in the general case without introducing an irregularity 
into the expansion. 

The equation for the regular term (F? is always inhomcgeneous due to the presence of 
the dissipative term $, and to satisfy condition (2.4) we must introduce into G, a free 
constant through the non-linear terms, i.e. we must construct the expansions in powers of Iln 
where n is an integer. 

However, as we shall show, the appearance of the powers '13, 'I, , etc. is possible only 
when additional conditions are met. Therefore the expansion (2.1) in ser.:;-integral powers 
represents the most generai expansion near the singularity. Introduction of the logarithzic 
terms into the expansion used in analogous cases in the viscous sublayers, does not yield tie 
required result for the operator L. 

Let 'i, = C,lTr,, . Then the condl'tion that (2.4: has a solution will yield the follovlng 
expression for the second eqi;etion: 

According to (2.3).q2 = qzfi - Cpq znc? LTE necessary condition for the third equation to 
have a solution is, that the foilowlng condition hoids: 

Cor.t;n'Jino this ;jrocess, _I WE stali express the constants C, in terms of the functions 
&'. r and cf the velocity expansion coefficients in the external flow. 

Equations (2.5) implies 
in the external flex, namely 

then a regular expansion can be constructed irrespective of the existence of the characteristic 
soliition q 0. Here we have qj. = 0 for 066 k: q* = ‘cl0 + CzqO. Cc are determined frori, the 

that when a specific conditron is imposed cr. the velocity gradient 

(2.6) 

condition for the equation to be solvable for T,, q, = r&40 7 C,qO, etc. 
However, in any case the existence of a characteristic solution means that the solution 

is unstable to small perturbations since the constants in the approximation in question are 
determined by the condition for the higher-order approximation to be solvable, and hence the 
change in the boundary conditions in the higher approximation, e.g. u,* (r,). will influence 

the magnitude of the given approximation (on C,). The choice of the sign of C, must follow 
from numerical integration of the quasicylindrical approximation equations and obviously can- 
not be established from a local malySiS. 

If condition (2.63 does not hold, expansion (2.1) can be constructed only on one side 
of the singularity (according to (2.5) the constant C, must be imaginary on the other side:. 
Note that the impossibility of continuing the solution past the singularity was discovered in 
/2, 3/ for singularities in a boundary layer with a given pressure gradient. 

3. Expansion (2.1) cannot be constructed if 

J =O. (3.1) 
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In this case we must construct the expansion in powers of 1/5,1/e,..., although the expres- 
sions for the constants will contain, as before, a denominator depending on U,r. When the 
denominator becomes equal to zero, we must change over to an expansion in powers of Ii ‘i 4’ 3r 
3’ 

,,, . . ., etc. 
Let us consider now the conditions that expansions begin with the power l/n are formulated 

v = q0 L j'l"r(, T tzJnyt T Et"-') " (Cn_r f ET, + . . . . 

We have for all k< n the uniform boundary conditions on 'Cr. and the viscous terms do 
not occur in the right-hand sides of the equations 

Let a characteristic solution vO. g1 = C,vO exist. Then, provided that the condition 
(3.1) for the second equation to be solvable holds, we obtain qI = C,'~zO 7 C,pO. The necessary 
condition for the third equation to be solvable is, that 

The condition for the fourth equation to be solvable has the form 

(3.4) 

The process can be continued. For example, if qO exists, conditions (3.1), (3.3), (3.4) 
hold and the condition for the fifth equation of (3.2) to be solvable does not hold, then we 
have an expansion in powers ':j.9 j, 3,S,.. Note that the number R depends on the fern; of the 
profiles Z-.r only, and therefore characterizes the state of the flow at the given point. 

Thus in order to have an expansion in powers of 1 n. 'pO must exist, and an additional 
7, - 3 conditions of the type (%I), @.?I), (3.4) must hold. The expansion obtained will contain 
,i - 2. arbitrary constants. 

4. Let us investigate the possibility of singularities appearing on two different 
families of profiles. 

The two-parameter family of profiles 

[' _ ] - ‘1 - , L- ( i‘ :_ .;i_= ;’ !, - c-“, (4.1; 

can be regarded as the limiting case of a solution describing a flow in a vertical trace /lo;. 
This family was used in /ll/ to model 2 flow in the linear analysis o f the stability-of vortex 
lines. We know that such profiles approximate well the velocity and circulation distributions 
upstream froa the point of vortex breakdown ,'5/. 

The two-parameters family 

1' = a. -- (1 - a! 4y 13 - 4 c-s.- 3lJ), 
- 

r = ?I = 4sY (1 - !,: (4.2) 
when !: < 1,~ 
I' = 1. r = ;‘ when I, > l,* 

was used in /12/ to analyse vortex breakdown using the integral method, and as a boundary 
condition in the incoming fiow upstrea of the point of vortex breakdown /13/. 

Fig.1 Fig.2 
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For the families (4 I' (4.2; (;L = L'(O) is the velocity on the axis and L (oci- i, y= F_ character- 
izes the twist intensity. We will compute the functions R,, R,. a)? over the distributions 
(4.1). (4.2). Next we integrate for fixed D the equation 'P"a - R,T~= 0 with initial conditions 
pn ((I) = 0. 'lo' IO) = 1 upwards from the axis y=O, removing the values of the parameter y at 
which q,'(oj) = 0 (for the family (4.2) the integration is carried out over the interval (0, Ii,\). 

Figs.1 and Zshow the results of the computations for the families of profiles (4.!), (4.2; 
respectively. The solid lines show the values of the parameters a. p for which the character- 
istic solution q,, fyi exists. This implies that a regular expansion near the profiles with 
such parameter values is in general impossible. 

For fixed a an infinite increasiny sequence of the values y1<y2<. ..<yn exists for 
which qO'(xz: 11. and for y= *in the function qO'(y) vanishes within the interval of integration 
n--l times. Using the WKB method /14/ to analyse the distribution of the eigenvalues, we can 
obtain an asymptotic expression for *;n which holds as n--m 

(4.3) 

The relation (4.3) and the results of the computations shown in Figs.1 and 2 show that 
the lines yn(aj narrow during the limiting passage as a-0, with fixed s > 0, sn (0) = 0. 

The value of J in (2.5) is less than zero in the shaded areas in Figs.1, 2; consequently 
points exist on the lines ~~(a) for even n, at which the expansion begins with the power 
1.n (n > 2). 

The classification of the flows into supersonic and subsonic /4/ is based on a study of 
small flow perturbations whose scale is of the order of the vortex radius, i.e. on the lines 
which are much smaller than the characteristic longitudinal size in the quasicylindrical 
approximation (the effect of viscosity is insignificant in relation to these scales). Writing 
the stream function in the forn $ (r, ti, = q, (.y: - Mirq (y) where 9 = .r,~ and passing to the limit 
as (E-O,Cj- 0) in the Navler-Stokes equations, we obtain the following eigenvalue problem: 

Fig.3 

qru + (h2,'2y - R,) q = 0. q(O)=O, @(m)=O. 

Under the assumptions made above about L‘,F', the problem 
has an infinite series of real eigenvalues i.,% < ii,= < i. 2 * 

20 If i.,' < (1, and therefore if the standing waves can be maintained, 
, the state with 

,:;, 

c, F will be called "subcritical", and "super- 
critical" when i.,? > (1 /4,'. When the twist increases, the 
values i.,?. i.,' etc. decrease and pass through zero one after 
the other. Comparing problens (2.2) and (4.1) we find, that 
every consecutive passage of the eigenvalues i,: through zerc 
Will lead to a singularity in the quasicylindrical approximation. 
This means that the qa.Jsicylindrical approxrmation generates 
a singnlarrty only in response to the states C‘, F capable of 
maintaining the standing waves of infinite length (in the scale 
x: . A singnlarity with minimur,; twist and the function qn 
withoi;t any zero within the interval, corresponds to criticai 

-20 flcws and can be ordered according to the number of zeros of 
the functror. F,, within the interval. 

Fig.3 shows the distributions ", 1.i:' along the lines of 

critical state (the lower lines in Flgs.1, 2) for which there is no singularity in the critical 
state. Line 1 corresponds tc the fzily (i.l>, and line : tc (4.2). 

We see that a singuierity may appear even when the pressure gradient in the outer flow is 
favourable u,' ldl'>O. whicn is not the case for a boundary layer. However, when the values of 

L.s ’ (Ali lie above the line i?. Fig.3, i.e. when the outer flow diverges sufficiently, a singclar- 
ity cannot appear. 

1. 

2. 

3. 

4. 
5. 

The author tha.r+.s V.Ya. Neiland for discussing the results. 
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AND THE PASSAGE TO 
THE LIMIT WITH RESPECT TO LONGITUDINAL VISCOSITY IN THE 

NAVIER-STOKES EQUATIONS* 

V.M. SOLOPENKO 

It is shown that the generalized Prandtl equations (GPE) represent a 
limiting case of the Navier-Stokes (NS) equations when the "longitudinal" 
viscosity tends to zero. An estimate for the neglected terms is obtained 
and a theorem of existence proved for the GPE. The theorem was established 
earlier /l/ for the case of homogeneous conditions. 

The passage to the limit of the non-steady Euler equations is carried 
out in /2/ under the assumption that the vorticity vanishes on the solid 
surfaces. Although the assumption is not physically justified, it 
enables the integrals over the solid surfaces to be estimated easily. 

It is well-known that the use of the Hopf truncation for the NS 
equations in the inhomogeneous stationary problelrof flow, leads to an 
estimate of the nor of the velocity gradient depending exponentially on 
viscosity /2, 3/. We note that no such difficulty arises in the case of 
the non-stationary problem, nor in the Cauchy problem /4, 5/. In the 
first case the "smoothing" may take place with time, and in the second 
case there are no boundary effects at all. 

The problem of flow with various boundary conditions specified in 
terms of the stream and Bernoulli functions, free from the above drawbacks, 
is studied below. 

1. Formulation of the problem. The flow takes place within the square R = (0.1) x 
(0,1) . We denote the segment r=O by rl and number the remaining sides l?2,3,4 in an 

anticlockwise direction r,?s denote the inflow and outflow segments respectively, and r2,, 

are rigid walls. Introducing the Bernoulli function H = p+- '/2(~v')2 ,-1,'2($x')2 1 n (the nota- 
tion is standard), we consider the system of equations 

. *u + Y*IJ.p”)r’ + 
;::;,n + vp\l.“*“)y’ 

Hy' = &‘Av T f2, 0 .< P1 < v2 (1.1) 
- H,' = -&‘Aq - fl. v2 > 0 

where f,, 1 are the components of the mass force vector. When v, = \'* = \‘, we have the NS 
equations and when y1 = 0, we have the GPE. Eliminating H, we can rewrite (1.1) in the 
following equivalent form: 

VI wx* T vz CAW; = - J;’ (.h&’ -c cl’“’ (A$),’ + ,t;, - t;, 
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